Sistema de inspección Keye Vision
  • Inspección visual de imágenes de IA basada en un algoritmo de aprendizaje profundo
    Inspección visual de imágenes de IA basada en un algoritmo de aprendizaje profundo Aug 08, 2024
    La moderna tecnología de visión por computadora basada en inteligencia artificial y métodos de aprendizaje profundo ha logrado avances significativos en la última década. Hoy en día, se utiliza ampliamente para la clasificación de imágenes, el reconocimiento facial y el reconocimiento de objetos dentro de imágenes. Entonces, ¿qué es exactamente el aprendizaje profundo? ¿Cómo se aplica el aprendizaje profundo en visual inspección?¿Qué es el aprendizaje profundo?El aprendizaje profundo es una rama de las técnicas de aprendizaje automático que consta de clasificadores construidos a partir de redes neuronales artificiales. El principio detrás de esto es enseñar a las máquinas a aprender a través de ejemplos. to proporcionare Ejemplos etiquetados de tipos específicos de datos para la red neuronal. El modelo extrae patrones comunes de estos ejemplos y los convierte en un modelo de red neuronal que contiene esta información, lo que ayuda a clasificar la información obtenida en el futuro.La inspección visual basada en tecnología de aprendizaje profundo puede lograr localización, diferenciación de defectos, reconocimiento de caracteres y más, simulando la inspección visual humana durante la operación. W¿Qué significa esto realmente? Por ejemplo, si queremos crear imágenes inspección software para inspeccionar baterías de litio, necesitamos desarrollar un algoritmo basado en aprendizaje profundo y entrénelo utilizando ejemplos de los defectos que deben detectarse. Con los datos de los defectos, la red neuronal finalmente los detectará sin instrucciones adicionales.Visual inspección sistemas basados en aprendizaje profundo son expertos en detectar defectos con características complejas. Pueden abordar no sólo defectos complejos de superficie y apariencia, sino también generalizar y conceptualizar la superficie de las baterías de litio.¿Qué es una red neuronal convolucional?Cuando se trata de visuales inspección Residencia en En el aprendizaje profundo, la tecnología más comúnmente mencionada es la red neuronal convolucional (CNN). Entonces, ¿qué es exactamente una CNN?Una red neuronal convolucional, o CNN, posee características especiales que retienen información espacial en la red, lo que la hace más adecuada para problemas de clasificación de imágenes. Sus principios están inspirados en datos biológicos de la visión humana, donde la visión se basa en múltiples capas corticales y cada capa reconoce información estructurada cada vez más compleja. Lo que percibimos consta de muchos píxeles individuales; luego, se reconocen las composiciones geométricas a partir de estos píxeles, seguidos de elementos más complejos, como objetos, rostros, cuerpos humanos y animales.Kojo La tecnología Imagen visual de IA inspección utiliza una red neuronal convolucional, centrándose más en cascadas de redes, diseñando diferentes métodos de redes en cascada adaptados a diferentes escenarios, que reflejan con precisión las características de la imagen para mejorar la precisión durante la visualización. inspección.Cómo integrar un visual de IA inspección ¿Sistema?01 Requisitos CaclaraciónIntegrando un visuales de IA inspección sistema Por lo general, comienza con un análisis comercial y técnico. En primer lugar, es fundamental aclarar qué tipos de defectos debe detectar el sistema y en qué condiciones ambientales se utilizará.02 Recopilación y preparación de datosAntes de desarrollar un aprendizaje profundo modelo, es necesario recopilar y preparar datos. Keye Technology ha creado una biblioteca de algoritmos rica y sólida a lo largo de más de una década de desarrollo y optimización continuos. Cuando se enfrenta a la inspección de nuevos productos, la biblioteca de algoritmos se puede aprovechar para el aprendizaje incremental/por transferencia, donde se agrega una pequeña cantidad de muestras nuevas a los resultados de la capacitación original, lo que acorta significativamente el tiempo de capacitación para nuevos productos y permite un aprendizaje rápido.03 Capacitación y EvaluaciónDespués de recolectar las nuevas muestras, el siguiente paso es entrenar, validar y evaluar el rendimiento y la precisión de los resultados del modelo.04 Implementación y mejoraAl implementar un visual inspección modelo, es crucial considerar cómo la arquitectura del sistema de software y hardware corresponde a la capacidad del modelo.Casos de aplicación de AI Visual inspección SistemasContenedores de embalaje: Adecuados para el control de calidad de productos, utilizados para detectar defectos externos como puntos negros, rebabas, espacios y números de molde.Baterías de litio: En la producción de baterías de litio, a menudo se producen defectos comunes como poros, agujeros de arena, rayones, irregularidades y soldadura inadecuada durante procesos como la soldadura de pernos de sellado y la soldadura de la cubierta superior. 

¿Necesitas ayuda? Habla con nosotros

dejar un mensaje
Para cualquier solicitud de información o soporte técnico, rellene el formulario. Todos los campos marcados con un asterisco* son obligatorios.
entregar
Buscando FAQs?
CONTÁCTENOS #
+(86) 183 2473 5376

Nuestro horario

Lun 21/11 - Miércoles 23/11: 9 a.m. - 8 p.m.
Jueves 24/11: cerrado - ¡Feliz Día de Acción de Gracias!
Viernes 25/11: 8 a.m. - 10 p.m.
Sábado 26/11 - Dom 27/11: 10 a.m. - 9 p.m.
(todas las horas son hora del este)

Hogar

Productos

Whatsapp

Contáctenos